Matrices and Determinants - Class XII

Related Questions with Solutions

Questions

Quetion: 01

Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

A. If det $A=\pm 1$, then A^{-1} need not exist

B. If $\det A = \pm 1$, then A^{-1} exists but all its entries are not necessarily integers

C. If $\det A \neq \pm 1$, then A^{-1} exists and all its entries are non-integers

D. If $\det A = \pm 1$, then A^{-1} exists and all its entries are integers

Solutions

Solution: 01

Each entry of A is an integer, so the cofactor of every entry is an integer and so each entry of adjoint is an integer.

Also det $A = \pm 1$ and we know that

$$A^{-1} = \frac{1}{\det A} (\operatorname{adj} A)$$

 $A^{-1} = \frac{1}{\det A}(\operatorname{adj} A)$ This means all entries in A^{-1} are integers.

Correct Options

Answer:01

Correct Options: D